Effects of inoculation with four mycorrhizal species on seed phenolic and fatty acids of sesame plants grown under different irrigation regimes.

阅读:3
作者:Ghasemi Masoumeh, Zahedi Morteza, Gheysari Mahdi, Sabzalian Mohammad R
This study evaluated the interaction effects of irrigation level (well-watered and water stress conditions) and inoculation by different mycorrhizal species (non-inoculated, Funneliformis mosseae, Rhizophagus irregularis, Claroideoglomus claroideum, and Glomus fasciculatum) on mycorrhizal colonization, antioxidant activity, seed yield and oil quality of two sesame cultivars (Yekta and Naz). Water deficit decreased mycorrhizal colonization, seed yield and oil concentration but increased antioxidant activity and seed total phenol and flavonoid concentrations. However, mycorrhizal inoculation increased antioxidant activity, seed yield, oil concentration and total phenolic and flavonoids. The lowest reduction by water stress and the highest increase by inoculation in seed yield were observed in Naz plants inoculated by Cl. claroideum. Principal component analysis showed the highest differentiation effect of water stress compared to mycorrhizal inoculation on both cultivars, indicating the relative sensitivity of the two cultivars to water deficit. However, the application of different species of mycorrhizal fungi versus the non-inoculation conditions was somewhat discriminative. In terms of fatty acids, in most cases, water stress increased oleic, palmitic and stearic acids and decreased linoleic and linolenic acids but inoculation increased oleic and linoleic acids and decreased linolenic, palmitic and stearic acids. Regarding phenolic and flavonoids components, the contents of chlorogenic and caffeic acids were increased by water stress but no consistent trend was noted in response to water stress for the other compounds. Mycorrhizal inoculation generally decreased chlorogenic acid but increased gallic, caffeic, p-coumaric, and ferulic acids. In conclusion, the results of the present study may help to increase the level of valuable compounds in sesame for further pharmaceutical purposes under water stress conditions and mycorrhizal symbiosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。