Enhancement of Nonlinear Dielectric Properties in BiFeO(3)-BaTiO(3) Ceramics by Nb-Doping.

阅读:9
作者:Yang Ziqi, Wang Bing, Li Yizhe, Hall David A
BiFeO(3)-BaTiO(3) (BF-BT) ceramics exhibit great potential for diverse applications in high temperature piezoelectric transducers, temperature-stable dielectrics and pulsed-power capacitors. Further optimization of functional properties for different types of applications can be achieved by modification of processing parameters or chemical composition. In the present work, the influence of pentavalent niobium substitution for trivalent ferric ions on the structure, microstructure and dielectric properties of 0.7BF-0.3BT ceramics was investigated systematically. Doping with niobium led to incremental reductions in grain size (from 7.0 to 1.3 µm) and suppression of long-range ferroelectric ordering. It was found that core-shell type microstructural features became more prominent as the Nb concentration increased, which were correlated with the formation of distinct peaks in the dielectric permittivity-temperature relationship, at ~470 and 600 °C, which were attributed to the BT-rich shell and BF-rich core regions, respectively. Nb-doping of BF-BT ceramics yielded reduced electronic conductivity and dielectric loss, improved electrical breakdown strength and enhanced dielectric energy storage characteristics. These effects are attributed to the charge compensation of pentavalent Nb donor defects by bismuth vacancies, which suppresses the formation of oxygen vacancies and the associated electron hole conduction mechanism. The relatively high recoverable energy density (W(rec) = 2.01 J cm(-3)) and energy storage efficiency (η = 68%) of the 0.7BiFeO(3)-0.3BaTiO(3) binary system were achieved at 75 °C under an electric field of 15 kV mm(-1). This material demonstrates the greatest potential for applications in energy storage capacitors and temperature-stable dielectrics.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。