The substitution of animal proteins with plant-based ones to fit environmental and economic demands is a challenge in gel applications. This study examined the thermal elation of mixtures of pea protein isolate (PPI) and egg white proteins (EWPs) at different PPI/EWP weight ratios (100/0, 75/25, 50/50, 25/75, 0/100) at pH 7.5 and 9.0. Viscoelastic and texture properties of the composite gels, along with the microstructure and molecular interactions involved in the gel network, were investigated. Except for PPI-EWP 100/0 at pH 9.0, all systems gelled with increasing gel hardness, springiness, and cohesiveness when EWP content increased. This was explained by the microstructure of the gels, wherein the presence of PPI enhanced the formation of aggregates embedded in the EWP network, thus loosening it. The rheological properties of the mixed gels were primarily influenced by the EWP network, involving disulfide bonds. However, upon the addition of PPI, hydrogen bonds and hydrophobic interactions predominated and the structure of the gel became more sensitive to pH as electrostatic repulsions interfered. Adjusting the ratio of PPI/EWP allows the production of gels with varying textures, and suggests the possibility of partially substituting egg white with pea proteins in food gel formulation.
Protein-Protein Interactions and Structure of Heat-Set Gels Based on Pea Protein and Egg White Mixtures.
阅读:19
作者:Kuang Jian, Hamon Pascaline, Lee Jeehyun, Bouhallab Said, Cases Eliane, Saurel Remi, Lechevalier Valérie
| 期刊: | Gels | 影响因子: | 5.300 |
| 时间: | 2025 | 起止号: | 2025 Feb 27; 11(3):176 |
| doi: | 10.3390/gels11030176 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
