Background/Objectives: Fungal infections caused by Candida species remain a significant clinical challenge, exacerbated by limitations in current antifungal therapies, including toxicity and poor bioavailability. This study aimed to develop and evaluate voriconazole-loaded zein-pectin-hyaluronic acid nanoparticles (ZPHA-VRC NPs) as a novel drug delivery system to enhance efficacy and reduce toxicity. Alternative in vitro and in vivo models were utilized to assess the safety and therapeutic potential of the nanoparticles. Methods: ZPHA-VRC NPs were prepared using a nanoprecipitation method and characterized for particle size, polydispersity index, zeta potential, and encapsulation efficiency. Antifungal activity was assessed via MIC assays against Candida albicans, C. krusei, and C. parapsilosis. Cytotoxicity was evaluated on Vero cells, while in vivo toxicity and efficacy were assessed using Galleria mellonella and Caenorhabditis elegans models. The therapeutic efficacy was further evaluated in an infected Caenorhabditis elegans model using survival and health scores. Results: ZPHA-VRC nanoparticles exhibited favorable physicochemical properties, including a particle size of approximately 192 nm, a polydispersity index of 0.079, a zeta potential of -24 mV, and an encapsulation efficiency of 34%. The nanoparticles retained antifungal activity comparable to free voriconazole while significantly reducing cytotoxicity. In vivo studies using G. mellonella and C. elegans demonstrated that ZPHA-VRC NPs markedly improved survival rates, reduced fungal burden, and enhanced health scores in infected models, outperforming the free drug. Additionally, the nanoparticles exhibited a superior safety profile, minimizing systemic toxicity while maintaining therapeutic efficacy. Conclusions: ZPHA-VRC NPs offer a safer and more effective delivery system for VRC, addressing the limitations of conventional formulations. The integration of alternative efficacy and safety models highlights their value in preclinical research.
Development, Safety, and Therapeutic Evaluation of Voriconazole-Loaded Zein-Pectin-Hyaluronic Acid Nanoparticles Using Alternative In Vivo Models for Efficacy and Toxicity.
阅读:3
作者:Fin Margani Taise, Dos Santos Kelvin Sousa, Gualque Marcos William de Lima, Dos Santos Rafaela Cristine, Aoki Natália Cristina Morici, Auler Marcos Ereno, Fusco-Almeida Ana Marisa, Mendes-Gianinni Maria José Soares, Mainardes Rubiana Mara
| 期刊: | Pharmaceutics | 影响因子: | 5.500 |
| 时间: | 2025 | 起止号: | 2025 Feb 11; 17(2):231 |
| doi: | 10.3390/pharmaceutics17020231 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
