Economic productivity depends on reliable access to electricity, but the extreme shortage events of variable wind-solar systems may be strongly affected by climate change. Here, hourly reanalysis climatological data are leveraged to examine historical trends in defined extreme shortage events worldwide. We find uptrends in extreme shortage events regardless of their frequency, duration, and intensity since 1980. For instance, duration of extreme low-reliability events worldwide has increased by 4.1âhours (0.392âhours per year on average) between 1980-2000 and 2001-2022. However, such ascending trends are unevenly distributed worldwide, with a greater variability in low- and middle-latitude developing countries. This uptrend in extreme shortage events is driven by extremely low wind speed and solar radiation, particularly compound wind and solar drought, which however are strongly disproportionated. Only average 12.5% change in compound extremely low wind speed and solar radiation events may give rise to over 30% variability in extreme shortage events, despite a mere average 1.0% change in average wind speed and solar radiation. Our findings underline that wind-solar systems will probably suffer from weakened power security if such uptrends persist in a warmer future.
Climate change impacts on the extreme power shortage events of wind-solar supply systems worldwide during 1980-2022.
阅读:3
作者:Zheng Dongsheng, Tong Dan, Davis Steven J, Qin Yue, Liu Yang, Xu Ruochong, Yang Jin, Yan Xizhe, Geng Guannan, Che Huizheng, Zhang Qiang
| 期刊: | Nature Communications | 影响因子: | 15.700 |
| 时间: | 2024 | 起止号: | 2024 Jun 18; 15(1):5225 |
| doi: | 10.1038/s41467-024-48966-y | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
