Genome-wide prediction of stop codon readthrough during translation in the yeast Saccharomyces cerevisiae.

阅读:6
作者:Williams I, Richardson J, Starkey A, Stansfield I
In-frame stop codons normally signal termination during mRNA translation, but they can be read as 'sense' (readthrough) depending on their context, comprising the 6 nt preceding and following the stop codon. To identify novel contexts directing readthrough, under-represented 5' and 3' stop codon contexts from Saccharomyces cerevisiae were identified by genome-wide survey in silico. In contrast with the nucleotide bias 3' of the stop codon, codon bias in the two codon positions 5' of the termination codon showed no correlation with known effects on stop codon readthrough. However, individually, poor 5' and 3' context elements were equally as effective in promoting stop codon readthrough in vivo, readthrough which in both cases responded identically to changes in release factor concentration. A novel method analysing specific nucleotide combinations in the 3' context region revealed positions +1,2,3,5 and +1,2,3,6 after the stop codon were most predictive of termination efficiency. Downstream of yeast open reading frames (ORFs), further in-frame stop codons were significantly over-represented at the +1, +2 and +3 codon positions after the ORF, acting to limit readthrough. Thus selection against stop codon readthrough is a dominant force acting on 3', but not on 5', nucleotides, with detectable selection on nucleotides as far downstream as +6 nucleotides. The approaches described can be employed to define potential readthrough contexts for any genome.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。