Gait scores are widely used in the genetic evaluation of horses. However, the nature of such measurement may limit genetic progress since there is subjectivity in phenotypic information. This study aimed to assess the application of machine learning techniques in the prediction of breeding values for five visual gait scores in Campolina horses: dissociation, comfort, style, regularity, and development. The dataset contained over 5000 phenotypic records with 107,951 horses (14 generations) in the pedigree. A fixed model was used to estimate least-square solutions for fixed effects and adjusted phenotypes. Variance components and breeding values (EBV) were obtained via a multiple-trait model (MTM). Adjusted phenotypes and fixed effects solutions were used to train machine learning models (using the EBV from MTM as target variable): artificial neural network (ANN), random forest regression (RFR) and support vector regression (SVR). To validate the models, the linear regression method was used. Accuracy was comparable across all models (but it was slightly higher for ANN). The highest bias was observed for ANN, followed by MTM. Dispersion varied according to the trait; it was higher for ANN and the lowest for MTM. Machine learning is a feasible alternative to EBV prediction; however, this method will be slightly biased and over-dispersed for young animals.
Supervised Machine Learning Techniques for Breeding Value Prediction in Horses: An Example Using Gait Visual Scores.
阅读:6
作者:Bussiman Fernando, Alves Anderson A C, Richter Jennifer, Hidalgo Jorge, Veroneze Renata, Oliveira Tiago
| 期刊: | Animals | 影响因子: | 2.700 |
| 时间: | 2024 | 起止号: | 2024 Sep 20; 14(18):2723 |
| doi: | 10.3390/ani14182723 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
