The limited proliferative capacity of erythroid precursors is a major obstacle to generate sufficient in vitro-derived red blood cells for clinical purposes. While BMI1, a Polycomb Repressive Complex 1 member, is both necessary and sufficient to drive extensive proliferation of self-renewing erythroblasts, its mechanism of action remains poorly understood. Here we report that BMI1 overexpression leads to 10 billion-fold increase in self-renewal of human erythroblasts, which can terminally mature and agglutinate with typing reagent monoclonal antibodies. BMI1 and RING1B occupancy, along with repressive histone marks, are present at known BMI1 target genes, including the INK-ARF locus, consistent with altered cell cycle kinetics following BMI1 inhibition. Upregulation of BMI1 target genes with low repressive histone modifications, including key regulators of cholesterol homeostasis, along with functional studies, suggest that both cholesterol import and synthesis are essential for BMI1-associated self-renewal. We conclude that BMI1 regulates erythroid self-renewal not only through gene repression but also through gene activation and offer a strategy to expand immature erythroid precursors for eventual clinical uses.
BMI1 regulates human erythroid self-renewal through both gene repression and gene activation.
阅读:10
作者:McGrath Kathleen E, Olsen Jayme L, Koniski Anne D, Murphy Kristin E, Getman Michael, An Hyun Hyung, Schulz Vincent P, Kim Ah Ram, Zhang Bin, Carlson Taylor L, Papoin Julien, Blanc Lionel, Kingsley Paul D, Westhoff Connie M, Gallagher Patrick G, Chou Stella T, Steiner Laurie A, Palis James
| 期刊: | Nature Communications | 影响因子: | 15.700 |
| 时间: | 2025 | 起止号: | 2025 Aug 15; 16(1):7619 |
| doi: | 10.1038/s41467-025-62993-3 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
