Distinguishing arteries from veins in the cerebral cortex is critical for studying hemodynamics under pathophysiological conditions, which plays an important role in the diagnosis and treatment of various vessel-related diseases. However, due to the complexity of the cerebral vascular network, it is challenging to identify arteries and veins in vivo. Here, we demonstrate an artery-vein separation method that employs a combination of multiple scanning modes of two-photon microscopy and a custom-designed stereoscopic fixation device for mice. In this process, we propose a novel method for determining the line scanning direction, which allows us to determine the blood flow directions. The vasculature branches have been identified using an optimized z-stack scanning mode, followed by the separation of blood vessel types according to the directions of blood flow and branching patterns. Using this strategy, the penetrating arterioles and penetrating venules in awake mice could be accurately identified and the type of cerebral thrombus has been also successfully isolated without any empirical knowledge or algorithms. Our research presents a new, more accurate, and efficient method for cortical artery-vein separation in awake mice, providing a useful strategy for the application of two-photon microscopy in the study of cerebrovascular pathophysiology.
Arteries and veins in awake mice using two-photon microscopy.
阅读:7
作者:Liu Shuangshuang, Liu FangYue, Lin Zhaoxiaonan, Yin Wei, Fang Sanhua, Piao Ying, Liu Li, Shen Yi
| 期刊: | Journal of Anatomy | 影响因子: | 1.900 |
| 时间: | 2025 | 起止号: | 2025 May;246(5):798-811 |
| doi: | 10.1111/joa.14110 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
