Different segments of the cerebral vascular network may react distinctly to brain ischemia and recanalization. However, there are limited systematic observations of these vascular responses in mice under a physiological state following ischemic stroke. Herein, we aimed to investigate the vasodynamics among several segments along the cerebral vessels in awake mice following cerebral ischemia/recanalization via two-photon imaging. Plasma in the blood vessels were labelled with fluorescein isothiocyanate dextran. Smooth muscle cells and pericytes were labelled via a genetic mouse line (PDGFRβ-tdTomato). We observed a no-reflow phenomenon in downstream microcirculation, and the vasodynamics of different segments of larger cerebral vessels varied in the penumbra area following cerebral ischemia-reperfusion. Despite obtaining reperfusion from the middle cerebral artery, there were significant constrictions of the downstream blood vessels in the ischemic penumbra zone. Interestingly, we observed an extensive constriction of the capillaries 3 hours following recanalization, both at the site covered by pericyte soma and by the pericyte process alone. In addition, we did not observe a significant positive correlation between the changed capillary diameter and pericyte coverage along the capillary. Taken together, abnormal constrictions and vasodynamics of cerebral large and small vessels may directly contribute to microcirculation failure following recanalization in ischemic stroke.
A systematic observation of vasodynamics from different segments along the cerebral vasculature in the penumbra zone of awake mice following cerebral ischemia and recanalization.
阅读:3
作者:Qiu Baoshan, Zhao Zichen, Wang Nan, Feng Ziyan, Chen Xing-Jun, Chen Weiqi, Sun Wenzhi, Ge Woo-Ping, Wang Yilong
| 期刊: | Journal of Cerebral Blood Flow and Metabolism | 影响因子: | 4.500 |
| 时间: | 2023 | 起止号: | 2023 May;43(5):665-679 |
| doi: | 10.1177/0271678X221146128 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
