Functionalization of surfaces with poly(sodium styrenesulfonate) (poly(NaSS)) has recently been found to enhance osteointegration of implantable materials. Radical polymerization of poly(NaSS) on titanium (Ti)-based substrates has been used to improve their long-term performance by preventing fibrosis and consequently implant loosening. However, the influence of the sulfonate groups on the early cell behavior and the associated molecular phenomena remains to be understood. In this work, we used quartz crystal microbalance with dissipation (QCM-D) to elucidate the role of poly(NaSS) in enhancing osteoblastic cell attachment. This was measured by following the cell attachment using the MC3T3-E1 cell line, on fetal bovine serum (FBS) preadsorbed surfaces and on substrates adsorbed with a series of relevant proteins, bovine serum albumin (BSA), fibronectin (Fn), and collagen type I (Col I). Comparison of the performance of poly(NaSS) with other clinically important substrates such as Ti alloy Ti6Al4V, gold, and poly(desamino-tyrosyl-tyrosine ethyl ester carbonate) (poly(DTEc)) indicates poly(NaSS) to be a superior substrate for MC3T3-E1 cells attachment. This attachment was found to be integrin mediated in the presence of Fn and Col I. Antibodies specific to the RGD peptide and the N- and C-terminal HB-binding domains reacted more intensively with Fn adsorbed on poly(NaSS). Fn adapts a conformation favorable to RGD mediated cell attachment when adsorbed onto poly(NaSS).
Poly(NaSS) functionalization modulates the conformation of fibronectin and collagen type I to enhance osteoblastic cell attachment onto Ti6Al4V.
阅读:3
作者:Felgueiras Helena P, Sommerfeld Sven D, Murthy N Sanjeeva, Kohn Joachim, Migonney Véronique
| 期刊: | Langmuir | 影响因子: | 3.900 |
| 时间: | 2014 | 起止号: | 2014 Aug 12; 30(31):9477-83 |
| doi: | 10.1021/la501862f | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
