Induced neural stem cells from human patient-derived fibroblasts attenuate neurodegeneration in Niemann-Pick type C mice.

阅读:3
作者:Hong Saetbyul, Lee Seung Eun, Kang Insung, Yang Jehoon, Kim Hunnyun, Kim Jeyun, Kang Kyung Sun
BACKGROUND: Niemann-Pick disease type C (NPC) is caused by the mutation of NPC genes, which leads to the abnormal accumulation of unesterified cholesterol and glycolipids in lysosomes. This autosomal recessive disease is characterized by liver dysfunction, hepatosplenomegaly, and progressive neurodegeneration. Recently, the application of induced neural stem cells (iNSCs), converted from fibroblasts using specific transcription factors, to repair degenerated lesions has been considered a novel therapy. OBJECTIVES: The therapeutic effects on NPC by human iNSCs generated by our research group have not yet been studied in vivo; in this study, we investigate those effects. METHODS: We used an NPC mouse model to efficiently evaluate the therapeutic effect of iNSCs, because neurodegeneration progress is rapid in NPC. In addition, application of human iNSCs from NPC patient-derived fibroblasts in an NPC model in vivo can give insight into the clinical usefulness of iNSC treatment. The iNSCs, generated from NPC patient-derived fibroblasts using the SOX2 and HMGA2 reprogramming factors, were transplanted by intracerebral injection into NPC mice. RESULTS: Transplantation of iNSCs showed positive results in survival and body weight change in vivo. Additionally, iNSC-treated mice showed improved learning and memory in behavior test results. Furthermore, through magnetic resonance imaging and histopathological assessments, we observed delayed neurodegeneration in NPC mouse brains. CONCLUSIONS: iNSCs converted from patient-derived fibroblasts can become another choice of treatment for neurodegenerative diseases such as NPC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。