Cartilage oligomeric matrix protein promotes cell attachment via two independent mechanisms involving CD47 and alphaVbeta3 integrin.

阅读:3
作者:Rock Matthew J, Holden Paul, Horton William A, Cohn Daniel H
Cartilage oligomeric matrix protein (COMP) is a pentameric approximately 524 kDa multidomain extracellular matrix protein and is the fifth member of the thrombospondin family. COMP is abundantly expressed in proliferating and hypertrophic chondrocytes of the growth plate, articular cartilage, synovium, tendon, and ligament. The spatial localization of COMP highlights its importance in the phenotypes of pseudoachondroplasia (PSACH) and multiple epiphyseal dysplasia (MED), COMP disorders that are characterized by disproportionate short stature, brachydactyly, scoliosis, early-onset osteoarthritis, and joint hypermobility. In this study, the role of COMP in ligament was investigated with a series of cell attachment assays using ligament cells binding to COMP. A dose-dependent cell attachment activity was found, which was inhibited by a peptide containing the SFYVVMWK amino acid sequence derived from the globular C-terminal domain of COMP. This activity was independent of the recently described RGD-dependent attachment activity. Function-blocking antibodies to CD47 and alphaVbeta3 integrin reduced cell attachment to COMP, implicating the participation of these cell surface molecules in COMP cell binding. Immunofluorescence studies showed that cell attachment to COMP induced the formation of lamellae containing F-actin microspikes associated with fascin. We propose that COMP promotes cell attachment via two independent mechanisms involving cell surface CD47 and alphaVbeta3 integrin and that a consequence of cell attachment to COMP is the specific induction of fascin-stabilized actin microspikes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。