Exploiting the Achilles' Heel of Viral RNA Processing to Develop Novel Antivirals.

阅读:2
作者:Zahedi Amiri Ali, Ahmed Choudhary, Dahal Subha, Grosso Filomena, Leng Haomin, Stoilov Peter, Mangos Maria, Toutant Johanne, Shkreta Lulzim, Attisano Liliana, Chabot Benoit, Brown Martha, Huesca Mario, Cochrane Alan
Treatment options for viral infections are limited and viruses have proven adept at evolving resistance to many existing therapies, highlighting a significant vulnerability in our defenses. In response to this challenge, we explored the modulation of cellular RNA metabolic processes as an alternative paradigm to antiviral development. Previously, the small molecule 5342191 was identified as a potent inhibitor of HIV-1 replication by altering viral RNA accumulation at doses that minimally affect host gene expression. In this report, we document 5342191 as a potent inhibitor of adenovirus, coronavirus, and influenza replication. In each case, 5342191-mediated reduction in virus replication was associated with altered viral RNA accumulation and loss of viral structural protein expression. Interestingly, while resistant viruses were rapidly isolated for compounds targeting either virus-encoded proteases or polymerases, we have not yet isolated 5342191-resistant variants of coronavirus or influenza. As with HIV-1, 5342191's inhibition of coronaviruses and influenza is mediated through the activation of specific cell signaling networks, including GPCR and/or MAPK signaling pathways that ultimately affect SR kinase expression. Together, these studies highlight the therapeutic potential of compounds that target cellular processes essential for the replication of multiple viruses. Not only do these compounds hold promise as broad-spectrum antivirals, but they also offer the potential of greater resilience in combating viral infections.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。