Tau from SPAM Transgenic Mice Exhibit Potent Strain-Specific Prion-Like Seeding Properties Characteristic of Human Neurodegenerative Diseases.

阅读:11
作者:Smith Ethan D, Paterno Giavanna, Bell Brach M, Gorion Kimberly-Marie M, Prokop Stefan, Giasson Benoit I
Tauopathies, including Alzheimer's disease and frontotemporal dementia with Parkinsonism linked to chromosome 17 (FTDP-17), are characterized by the aberrant aggregation of tau protein into neurofibrillary tangles. Despite extensive studies on tau aggregation, the mechanisms of tau misfolding and propagation remain incompletely understood. In this study, we utilize the SPAM (S320F/P301S) tau transgenic mouse model, which expresses 0N4R human tau with two FTDP-17 mutations, to investigate the biochemical properties and seeding potential of misfolded tau from these mice. Sarkosyl extraction and ultracentrifugation were employed to isolate detergent-insoluble tau aggregates (SPAM-tau) from aged SPAM mice. These aggregates were then tested for their prion-type seeding activity in an established HEK293T cell model comparing the induced aggregation of wild-type and mutant forms of human and murine tau. Our results show that SPAM-tau exhibits distinct and vigorous prion-like seeding properties, inducing the aggregation of human and murine tau homologues with the formation of amyloidogenic (Thioflavin S-positive) inclusions. Importantly, SPAM-tau aggregates can facilitate the prion-type misfolding of wild-type and mutant forms of human and mouse tau. We demonstrated that these induced tau aggregates are able to be further transmitted in passaging studies. Furthermore, SPAM-tau preferentially templated 4R tau isoforms, sharing strain-like seeding properties with insoluble tau derived from the brains of individuals with progressive supranuclear palsy (PSP-tau). In summary, these findings enhance our understanding of tau aggregation and propagation, suggesting that SPAM-tau may serve as a valuable tool for studying tauopathies and evaluating potential therapeutic strategies aimed at halting tau misfolding and propagation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。