Leukemia cells remodel bone marrow stromal cells to generate a protumoral microenvironment via the S100A8-NOX2-ROS signaling pathway.

阅读:3
作者:Gu Yangyang, Xia Jingyi, Guo Yuhong, Tao Linfen, Zhang Guanbin, Xu Jianping
The bone marrow microenvironment (BMM) plays a crucial role in the pathogenesis and progression of acute myeloid leukemia (AML). AML cells can modify the BMM to establish a more favorable environment for their survival. However, the mechanism about the complex regulatory interplay between the BMM and AML cells remains unclear. In this study, we used proteomic analysis to elucidate the potential mechanisms underlying the interaction between bone marrow stromal cells (BMSCs) and AML cells. We found that the co-culture of AML cells and BMSCs facilitated the proliferation of AML cells, suppressed the proliferation of BMSCs and triggered their senescence. Furthermore, we show the aberrant expression of S100A8 that plays a crucial role in the communication between AML cells and BMSCs. In the co-culture system, overexpression of S100A8 in AML cells activated NOX2 and induced the production of reactive oxygen species (ROS) in the supernatant, thereby suppressing the proliferation of BMSCs and facilitating the senescence of BMSCs. Subsequently, aging BMSCs secreted a variety of cytokines, including IL-6, CXCL5, MIP-1b, etc. as shown by Cytokine Array and qPCR analysis, which had stimulatory effects on the progression of AML. In conclusion, the present study reveals the crucial involvement of the S100A8-NOX2-ROS signaling pathway in mediating communication between AML cells and BMSCs, suggesting that targeting S100A8 may constitute an efficient strategy for AML therapy.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。