Bone graft substitutes combining the mechanical features of poly-ε-caprolactone (PCL) and the bioactivity of β-tricalcium phosphate (β-TCP) have been widely reported in the literature. Surprisingly, however, very little is known about the incorporation of carbonate at a biomimicking level. The authors studied β-TCP/PCL composites at 20 wt.% and 40 wt.%, either enriched or not with sodium bicarbonate (at 2 wt.% and 4 wt.%), through SEM and EDX analyses; surface free energy estimation; pH measurement after 1, 2, and 3 days of incubation in cell media; nanoindentation; and a protein adsorption test with bovine serum albumin. The early biological response was assessed using adipose mesenchymal stem cells, as an established in vitro model, via cellular adhesion (20 min), spreading (24 h), and viability assays (1, 3, 7 days). By increasing the β-TCP content, the composites' hardnesses and Young's moduli (EiT) were improved, as well as their protein adsorption compared to neat PCL. Sodium bicarbonate increased the polar component of the surface energy, alkalinized the composite with a higher β-TCP content, and attenuated its early negative cell response. Further investigation is needed to deepen the knowledge of the mechanisms underpinning the mechanical features and long-term biological behavior.
Poly(ε-Caprolactone)/Sodium Bicarbonate/β-Tricalcium Phosphate Composites: Surface Characterization and Early Biological Response.
阅读:4
作者:Mosca Balma Alessandro, Pedraza Riccardo, Orrico Clarissa, Meinardi Sara, Genova Tullio, Gautier di Confiengo Giovanna, Faga Maria Giulia, Roato Ilaria, Mussano Federico
| 期刊: | Materials | 影响因子: | 3.200 |
| 时间: | 2025 | 起止号: | 2025 Jun 3; 18(11):2600 |
| doi: | 10.3390/ma18112600 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
