Alginate-Based Hydrogels with Amniotic Membrane Stem Cells for Wound Dressing Application.

阅读:4
作者:Fitriani Nurul, Wilar Gofarana, Narsa Angga Cipta, Elamin Khaled M, Wathoni Nasrul
OBJECTIVE: Chronic wounds are a common clinical problem that necessitate the exploration of novel regenerative therapies. We report a method to investigate the in vitro wound healing capacity of an innovative biomaterial, which is based on amniotic membrane-derived stem cells (AMSCs) embedded in an alginate hydrogel matrix. The aim of this study was to prepare an sodium alginate-based hydrogel, cross-linked calcium chloride (CaCl(2)) with the active ingredient AMSC (AMSC/Alg-H) and to evaluate its in vitro effectiveness for wound closure. METHODS: This hydrogel preparation involved combining sterile solutions of AMSC, sodium alginate, and CaCl(2,) followed by rinsing with serum-free media. The cells were cultured in different 6-well plates, namely sodium alginate, calcium chloride, AMSC, Alg-H, and AMSC/Alg-H, in complete medium with 10% FBS. The hydrogel was successfully formulated, as confirmed by characterization techniques including Scanning Electron Microscopy (SEM), Fourier Transform Infrared (FTIR) spectroscopy, Differential Scanning Calorimetry (DSC), Cytotoxicity Studies, TGF-β1 Level Measurement by ELISA, and Cell Scratch Wound Assay. RESULTS: Cryo-EM characterization of the Alg-H preparation successfully demonstrated the encapsulation of MSCs. FTIR and DSC analyses indicate that crosslinking transpires in Alg-H encapsulating AMSC. The AMSC/Alg-H preparation showed no significant difference in toxicity compared to HaCaT cells (p < 0.05), indicating it was not toxic to HaCaT cells. Furthermore, in the scratch wound assay test at 24 hours, the AMSC/Alg-H preparation achieved 100% wound closure, outperforming both AMSC and Alg-H alone. In vitro assessment revealed that AMSC/Alg-H significantly enhanced key wound healing processes, including cell proliferation and migration, compared to Alg-H. CONCLUSION: Our study demonstrated the promising potential of AMSC/Alg-H as an enhanced regenerative therapy for in vitro wound healing. AMSC/Alg-H was able to maintain the viability of AMSCs and facilitate the formation of tissue-like structures.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。