PURPOSE: Advanced glycation end products (AGEs) often accumulate in the Achilles tendon during the course of diabetes. This study aims to determine the impact of AGEs on tendon repair and explore the role of pioglitazone in mitigating this impact. METHODS: Forty-eight male 8 week-old Sprague Dawley rats were selected in this study. After transection of Achilles tendon, the rats were randomly divided into four groups. The Achilles tendons of rats were injected with 1000 mmol/L D-ribose to elevate the content of AGEs within the tendons in two groups, the remaining two groups received injections of phosphate buffered saline (PBS) solution. Subsequently, the first two groups were respectively received oral administration of pioglitazone (20 mg/kg/day) and PBS. The remaining two groups were given the same treatment. The expression of the collagen-I, TNF-α, IL-6 of the repaired tendon were detected. The macroscopic, pathologic and biomechanical aspects of tendon healing were also evaluated. RESULTS: AGEs accumulation in tendon during the healing process increases the expression of inflammatory factors such as TNF-α and IL-6, leading to insufficient synthesis of collagen-I and delayed recovery of the tendon's tensile strength. Pioglitazone significantly attenuated the damage caused by AGEs to the tendon healing process, effectively improving the recovery of tendon tensile strength. Pioglitazone could not inhibit the generation of AGEs in the tissue and also had no impact on the normal healing process of the tendon. CONCLUSIONS: Pioglitazone could prevent the deleterious impact of AGEs on the Achilles tendon healing and improve the biomechanical properties of the tendon.
Pioglitazone Antagonized the Effects of Advanced Glycation End Products on Achilles Tendon Healing and Improved the Recovery of Tendon Biomechanical Properties.
阅读:16
作者:Jia Gengxin, Jia Xiaoyang, Yang Juan, Shi Tianhao, Qiang Minfei, Chen Yanxi
| 期刊: | Cellular and Molecular Bioengineering | 影响因子: | 5.000 |
| 时间: | 2024 | 起止号: | 2024 Apr 2; 17(3):219-228 |
| doi: | 10.1007/s12195-024-00800-7 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
