Extrusion is an interesting technological tool that facilitates pulse formulation into flour mixtures, with tailored fibre content, total antioxidant capacity (TAC) and glycemic index (GI) among other components in final formulas. The gluten-free (GF) market has significantly grown during the last years. GF products have evolved from specialty health foods to products targeted to the general population and not only associated to celiac consumers. This study evaluates how temperature, cereal base (rice/corn) and pulse concentration affect extruded flour properties and which conditions are more efficient to develop a gluten-free flour with high TAC and low GI. Additionally, it evaluated the effect of this optimal formula after the baking process. The results showed an increase of total phenol (TP) and antioxidant activity with extrusion, with a temperature-dependent effect (130 °C ⥠120 °C ⥠110 °C), which may imply an enhanced bioaccessibility of phenolics compounds after extraction. Extrusion increased GI in comparison to native flour; however, a dough temperature of 130 °C resulted in a significantly (p ⤠0.05) lower GI than that observed for 110-120 °C doughs, probably associated to the pastification that occurred at higher temperatures, which would decrease the degree of gelatinization of the starches and therefore a significant (p ⤠0.05) GI reduction. Corn-lentil flour showed higher antioxidant properties and lower GI index in comparison with rice-lentil blends. The formulation of the optimal blend flour into a baked product (muffin) resulted in a significant loss of antioxidant properties, with the exception of the reducing power (FRAP), although the final antioxidant values of the baked product were in the range of the original native flour blend before any process.
Pulse-Cereal Blend Extrusion for Improving the Antioxidant Properties of a Gluten-Free Flour.
阅读:3
作者:Rico Daniel, Cano Ana Belén, MartÃn-Diana Ana Belén
| 期刊: | Molecules | 影响因子: | 4.600 |
| 时间: | 2021 | 起止号: | 2021 Sep 14; 26(18):5578 |
| doi: | 10.3390/molecules26185578 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
