Xenoreceptors of the nuclear receptor superfamily, such as pregnane X receptor (PXR), are liver-enriched ligand-activated transcription factors regarded as crucial sensors in xenobiotic exposure and detoxification. PXR controls transcription of many drug-handling genes and influx/eï¬ux transporters, thus playing a crucial role in drug metabolism and excretion. Liver functions have been studied using primary human hepatocytes (PHHs), which, when conventionally cultured, undergo rapid de-differentiation, leaving them unsuitable for long-term studies. Recently, 3D PHHs called spheroids have emerged as an in vitro model that is similar to in vivo hepatocytes regarding phenotype and function and represents the first in vitro model to study the long-term regulation of drug-handling genes by PXR. In this study, we used mathematical modelling to analyze the long-term activation of PXR in 3D PHHs through expression kinetics of three key PXR-regulated drug-metabolizing enzymes, CYP3A4, CYP2C9, and CYP2B6 and the P-glycoprotein eï¬ux transporter encoding gene, MDR1. PXR action in 3D PHHs was induced by the antibiotic rifampicin at two clinically relevant concentrations. The results confirmed that high rifampicin concentrations activated PXR nearly to its full capacity. The analysis indicated the highest PXR-induced transcription rate constant for CYP2B6. The rate constant dictating mRNA degradation associated with activated PXR was highest for CYP3A4. Moreover, we measured the metabolic activity of CYP3A4, CYP2C9, and CYP2B6 and quantified their metabolic rate constants. Metabolic activity rate constant of CYP3A4 was found to be the highest whereas that of CYP2B6 was found to be the lowest among the studied enzymes. Our results provide important insight into the regulation of PXR-target genes in 3D PHHs and show that mRNA expression and metabolic activity data can be combined with quantitative analysis to reveal the long-term action of PXR and its effects on drug-handling genes.
Quantifying expression and metabolic activity of genes regulated by pregnane X receptor in primary human hepatocyte spheroids.
阅读:5
作者:Lochman Lukáš, Kahiya Ellen Tanaka, Saade Bechara, Smutný Tomáš, Tebbens Jurjen Duintjer, Pávek Petr, Bernhauerová Veronika
| 期刊: | PLoS Computational Biology | 影响因子: | 3.600 |
| 时间: | 2025 | 起止号: | 2025 Apr 15; 21(4):e1012886 |
| doi: | 10.1371/journal.pcbi.1012886 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
