The kinase CPK5 phosphorylates MICRORCHIDIA1 to promote broad-spectrum disease resistance.

阅读:7
作者:Sun Congcong, Chen Yongming, Ma Aifang, Wang Pan, Song Yingying, Pan Jiaxin, Zhao Tingting, Tu Zhipeng, Liang Xiangxiu, Wang Xiaodan, Fan Jun, Bi Guozhi, Meng Xiangzong, Dou Daolong, Xu Guangyuan
In Arabidopsis (Arabidopsis thaliana), MICRORCHIDIA 1 (MORC1), a member of the MORC family of evolutionarily conserved GHKL-type ATPases, plays important roles in multiple layers of plant immunity. However, the molecular mechanism by which MORC1 regulates plant immunity remains obscure. Here, we report that the pathogen-responsive kinase CALCIUM-DEPENDENT PROTEIN KINASE 5 (CPK5) directly interacts with and phosphorylates MORC1, thereby promoting its stability and nuclear translocation. In the nucleus, MORC1 associates with the NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1)-TGACG-BINDING FACTOR (TGA) transcriptional complex to upregulate defense-responsive genes and promote plant resistance against several pathogens, such as the bacterial pathogen Pseudomonas syringae pv. tomato DC3000 and fungal pathogen Botrytis cinerea. Therefore, this study uncovers a MORC1-mediated immune signaling pathway, in which the CPK5-MORC1-NPR1-TGA module transduces Ca2+ signals, leading to the upregulation of defense genes involved in plant immunity.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。