Cell-Free Protein Synthesis as a Method to Rapidly Screen Machine Learning-Generated Protease Variants.

阅读:7
作者:Thornton Ella Lucille, Boyle Jeremy T, Laohakunakorn Nadanai, Regan Lynne
Machine learning (ML) tools have revolutionized protein structure prediction, engineering, and design, but the best ML tool is only as good as the training data it learns from. To obtain high-quality structural or functional data, protein purification is typically required, which is both time and resource consuming, especially at the scale required to train ML tools. Here, we showcase cell-free protein synthesis as a straightforward and fast tool for screening and scoring the activity of protein variants in ML workflows. We demonstrate the utility of the system by improving the kinetic qualities of a protease. By rapidly screening just 48 random variants to initially sample the fitness landscape, followed by 32 more targeted variants, we identified several protease variants with improved kinetic properties.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。