Acute consequences of a unilateral VIIIth nerve transection on vestibulo-ocular and optokinetic reflexes in Xenopus laevis tadpoles.

阅读:4
作者:Soupiadou Parthena, Gordy Clayton, Forsthofer Michael, Sanchez-Gonzalez Rosario, Straka Hans
Loss of peripheral vestibular function provokes severe impairments of gaze and posture stabilization in humans and animals. However, relatively little is known about the extent of the instantaneous deficits. This is mostly due to the fact that in humans a spontaneous loss often goes unnoticed initially and targeted lesions in animals are performed under deep anesthesia, which prevents immediate evaluation of behavioral deficits. Here, we use isolated preparations of Xenopus laevis tadpoles with functionally intact vestibulo-ocular (VOR) and optokinetic reflexes (OKR) to evaluate the acute consequences of unilateral VIIIth nerve sections. Such in vitro preparations allow lesions to be performed in the absence of anesthetics with the advantage to instantly evaluate behavioral deficits. Eye movements, evoked by horizontal sinusoidal head/table rotation in darkness and in light, became reduced by 30% immediately after the lesion and were diminished by 50% at 1.5 h postlesion. In contrast, the sinusoidal horizontal OKR, evoked by large-field visual scene motion, remained unaltered instantaneously but was reduced by more than 50% from 1.5 h postlesion onwards. The further impairment of the VOR beyond the instantaneous effect, along with the delayed decrease of OKR performance, suggests that the immediate impact of the sensory loss is superseded by secondary consequences. These potentially involve homeostatic neuronal plasticity among shared VOR-OKR neuronal elements that are triggered by the ongoing asymmetric activity. Provided that this assumption is correct, a rehabilitative reduction of the vestibular asymmetry might restrict the extent of the secondary detrimental effect evoked by the principal peripheral impairment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。