Global hypothesis testing for high-dimensional repeated measures outcomes.

阅读:8
作者:Chi Yueh-Yun, Gribbin Matthew, Lamers Yvonne, Gregory Jesse F 3rd, Muller Keith E
High-throughput technology in metabolomics, genomics, and proteomics gives rise to high dimension, low sample size data when the number of metabolites, genes, or proteins exceeds the sample size. For a limited class of designs, the classic 'univariate approach' for Gaussian repeated measures can provide a reasonable global hypothesis test. We derive new tests that not only accurately allow more variables than subjects, but also give valid analyses for data with complex between-subject and within-subject designs. Our derivations capitalize on the dual of the error covariance matrix, which is nonsingular when the number of variables exceeds the sample size, to ensure correct statistical inference and enhance computational efficiency. Simulation studies demonstrate that the new tests accurately control Type  I error rate and have reasonable power even with a handful of subjects and a thousand outcome variables. We apply the new methods to the study of metabolic consequences of vitamin B6 deficiency. Free software implementing the new methods applies to a wide range of designs, including one group pre-intervention and post-intervention comparisons, multiple parallel group comparisons with one-way or factorial designs, and the adjustment and evaluation of covariate effects.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。