Preparation and Characterization of Carbon Fibers from Lyocell Precursors Grafted with Polyacrylamide via Electron-Beam Irradiation.

阅读:4
作者:Kim Hong Gun, Kim Yong-Sun, Kuk Yun-Su, Kwac Lee Ku, Choi Sun-Ho, Park Jihyun, Shin Hye Kyoung
Carbon fibers, which act as reinforcements in many applications, are often obtained from polyacrylonitrile (PAN). However, their production is expensive and results in waste problems. Therefore, we focused on producing carbon fibers from lyocell, a cellulose-based material, and analyzed the effects of the process parameters on their mechanical properties and carbon yields. Lyocell was initially grafted with polyacrylamide (PAM) via electron-beam irradiation (EBI) and was subsequently stabilized and carbonized. Thermal analysis showed that PAM grafting increased the carbon yields to 20% at 1000 °C when compared to that of raw lyocell, which degraded completely at about 600 °C. Stabilization further increased this yield to 55%. The morphology of the produced carbon fibers was highly dependent on PAM concentration, with fibers obtained at concentrations ≤0.5 wt.% exhibiting clear, rigid, and round cross-sections with smooth surfaces, whereas fibers obtained from 2 and 4 wt.% showed peeling surfaces and attachment between individual fibers due to high viscosity of PAM. These features affected the mechanical properties of the fibers. In this study, carbon fibers of the highest tensile strength (1.39 GPa) were produced with 0.5 wt.% PAM, thereby establishing the feasibility of using EBI-induced PAM grafting on lyocell fabrics to produce high-performance carbon fibers with good yields.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。