Observational studies are rarely representative of their target population because there are known and unknown factors that affect an individual's choice to participate (the selection mechanism). Selection can cause bias in a given analysis if the outcome is related to selection (conditional on the other variables in the model). Detecting and adjusting for selection bias in practice typically requires access to data on nonselected individuals. Here, we propose methods to detect selection bias in genetic studies by comparing correlations among genetic variants in the selected sample to those expected under no selection. We examine the use of four hypothesis tests to identify induced associations between genetic variants in the selected sample. We evaluate these approaches in Monte Carlo simulations. Finally, we use these approaches in an applied example using data from the UK Biobank (UKBB). The proposed tests suggested an association between alcohol consumption and selection into UKBB. Hence, UKBB analyses with alcohol consumption as the exposure or outcome may be biased by this selection.
Use of genetic correlations to examine selection bias.
阅读:8
作者:Shapland Chin Yang, Gkatzionis Apostolos, Hemani Gibran, Tilling Kate
| 期刊: | Genetic Epidemiology | 影响因子: | 3.800 |
| 时间: | 2025 | 起止号: | 2025 Jan;49(1):e22584 |
| doi: | 10.1002/gepi.22584 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
