Among its attributes, the mythical philosopher's stone is supposedly capable of turning base metals to gold or silver. In an analogous fashion, we are finding that protein crystallization optimization using ionic liquids (ILs) often results in the conversion of base protein precipitate to crystals. Recombinant inorganic pyrophosphatases (8 of the 11 proteins) from pathogenic bacteria as well as several other proteins were tested for optimization by 23 ILs, plus a dH(2)O control, at IL concentrations of 0.1, 0.2, and 0.4 M. The ILs were used as additives, and all proteins were crystallized in the presence of at least one IL. For 9 of the 11 proteins, precipitation conditions were converted to crystals with at least one IL. The ILs could be ranked in order of effectiveness, and it was found that ~83% of the precipitation-derived crystallization conditions could be obtained with a suite of just eight ILs, with the top two ILs accounting for ~50% of the hits. Structural trends were found in the effectiveness of the ILs, with shorter-alkyl-chain ILs being more effective. The two top ILs, accounting for ~50% of the unique crystallization results, were choline dihydrogen phosphate and 1-butyl-3-methylimidazolium tetrafluoroborate. Curiously, however, a butyl group was present on the cation of four of the top eight ILs.
Ionic Liquids as Protein Crystallization Additives.
阅读:9
作者:Tarver Crissy L, Yuan Qunying, Pusey Marc L
| 期刊: | Crystals (Basel) | 影响因子: | 0.000 |
| 时间: | 2021 | 起止号: | 2021 Oct |
| doi: | 10.3390/cryst11101166 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
