Wenzhou TE: A First-Principle-Calculated Thermoelectric Materials Database.

阅读:4
作者:Fang Ying, Shao Hezhu
Since the implementation of the Materials Genome Project by the Obama administration in the United States, the development of various computational materials' databases has fundamentally expanded the choice of industries such as materials and energy. In the field of thermoelectric materials, the thermoelectric figure of merit (ZT) quantifies the performance of the material. From the viewpoint of calculations for vast materials, the ZT values are not easily obtained due to their computational complexity. Here, we show how to build a database of thermoelectric materials based on first-principle calculations for the electronic and heat transport of materials. Firstly, the initial structures are classified according to the values of bandgap and other basic properties using the clustering algorithm K-means in machine learning, and high-throughput first principle calculations are carried out for narrow-bandgap semiconductors which exhibit a potential thermoelectric application. The present framework of calculations mainly includes a deformation potential module, an electrical transport performance module, a mechanical and a thermodynamic properties module. We have also set up a search webpage for the calculated database of thermoelectric materials, providing search facilities and the ability to view the related physical properties of materials. Our work may inspire the construction of more computational databases of first-principle thermoelectric materials and accelerate research progress in the field of thermoelectrics.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。