The human pathogen Neisseria meningitidis (Nm) is a leading cause of bacterial meningitis and sepsis globally. A major virulence factor of Nm is the capsular polysaccharide (CPS), which in Nm serogroup A consists of N-acetyl-mannosamine-1-phosphate units linked together by phosphodiester linkages [ â 6)-α-D-ManNAc-(1 â OPO3 (-)â]n. Acetylation in O-3 (to a minor extent in O-4) position results in immunologically active polymer. In the capsule gene cluster (cps) of Nm, region A contains the genetic information for CPSA biosynthesis. Thereby the open reading frames csaA, -B, and -C are thought to encode the UDP-N-acetyl-D-glucosamine-2-epimerase, poly-ManNAc-1-phosphate-transferase, and O-acetyltransferase, respectively. With the aim to use a minimal number of recombinant enzymes to produce immunologically active CPSA, we cloned the genes csaA, csaB, and csaC and functionally characterized the purified recombinant proteins. If recombinant CsaA and CsaB were combined in one reaction tube, priming CPSA-oligosaccharides were efficiently elongated with UDP-GlcNAc as the donor substrate, confirming that CsaA is the functional UDP-N-acetyl-D-glucosamine-2-epimerase and CsaB the functional poly-ManNAc-1-phosphate-transferase. Subsequently, CsaB was shown to transfer ManNAc-1P onto O-6 of the non-reducing end sugar of priming oligosaccharides, to prefer non-O-acetylated over O-acetylated primers, and to efficiently elongate the dimer of ManNAc-1-phosphate. The in vitro synthesized CPSA was purified, O-acetylated with recombinant CsaC, and proven to be identical to the natural CPSA by (1)H NMR, (31)P NMR, and immunoblotting. If all three enzymes and their substrates were combined in a one-pot reaction, nature identical CPSA was obtained. These data provide the basis for the development of novel vaccine production protocols.
Molecular cloning and functional characterization of components of the capsule biosynthesis complex of Neisseria meningitidis serogroup A: toward in vitro vaccine production.
阅读:4
作者:Fiebig Timm, Freiberger Friedrich, Pinto Vittoria, Romano Maria Rosaria, Black Alan, Litschko Christa, Bethe Andrea, Yashunsky Dmitry, Adamo Roberto, Nikolaev Andrei, Berti Francesco, Gerardy-Schahn Rita
| 期刊: | Journal of Biological Chemistry | 影响因子: | 3.900 |
| 时间: | 2014 | 起止号: | 2014 Jul 11; 289(28):19395-407 |
| doi: | 10.1074/jbc.M114.575142 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
