A numerical technique of high-order piecewise parabolic method in combination of HLLD ("D" denotes Discontinuities) Riemann solver is developed for the numerical simulation of elastic-plastic flow. The introduction of the plastic effect is realized by decomposing the total deformation gradient tensor as the product of elastic and plastic deformation gradient tensors and adding plastic source term to the conservation law model equation with the variable of the elastic deformation gradient tensor. For the solution of the resulting inhomogeneous equation system, a temporal splitting strategy is adopted and a semi-implicit scheme is performed to solve the ODES in the plastic step, which is conducted to account for the contributions from plastic source terms. As seen from the results of test cases involving large deformation and high strain rate, the computational model used can reflect the characteristics of constitutive relation of material under strong impact action and our numerical method can realize the exact simulation of the elastic-plastic behavior of solid material, especially the accurate capture of the elastic-plastic waves. Further, it could also deal with high-speed impact problems with multi-material components, catching material interfaces correctly and keeping the interfaces sharp, when combined with interface tracking technique such as the level-set algorithm.
The piecewise parabolic method for elastic-plastic flow in solids.
阅读:4
作者:Zhang Wei, Chen Cheng, Liu Kun, Bai Jing-Song, Li Ping, Wan Zhen-Hua, Sun De-Jun
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2018 | 起止号: | 2018 Jul 3; 8(1):9989 |
| doi: | 10.1038/s41598-018-28182-7 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
