Linear mixed models (LMMs) are frequently used to analyze longitudinal data. Although these models can be used to evaluate mediation, they do not directly model causal pathways. Structural equation models (SEMs) are an alternative technique that allows explicit modeling of mediation. The goal of this paper is to evaluate the performance of LMMs relative to SEMs in the analysis of mediated longitudinal data with time-dependent predictors and mediators. We simulated mediated longitudinal data from an SEM and specified delayed effects of the predictor. A variety of model specifications were assessed, and the LMMs and SEMs were evaluated with respect to bias, coverage probability, power, and Type I error. Models evaluated in the simulation were also applied to data from an observational cohort of HIV-infected individuals. We found that when carefully constructed, the LMM adequately models mediated exposure effects that change over time in the presence of mediation, even when the data arise from an SEM.
The use of mixed models for the analysis of mediated data with time-dependent predictors.
阅读:4
作者:Blood Emily A, Cheng Debbie M
| 期刊: | Journal of Environmental and Public Health | 影响因子: | 0.000 |
| 时间: | 2011 | 起止号: | 2011;2011:435078 |
| doi: | 10.1155/2011/435078 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
