A Mechanistic Study on Iron-Based Styrene Aziridination: Understanding Epoxidation via Nitrene Hydrolysis.

阅读:6
作者:Lakk-Bogáth Dóra, Török Patrik, Pintarics Dénes, Kaizer József
Transition-metal-catalyzed nitrene transfer reactions are typically performed in organic solvents under inert and anhydrous conditions due to the involved air and water-sensitive nature of reactive intermediates. Overall, this study provides insights into the iron-based ([Fe(II)(PBI)(3)](CF(3)SO(3))(2) (1), where PBI = 2-(2-pyridyl)benzimidazole), catalytic and stoichiometric aziridination of styrenes using PhINTs ([(N-tosylimino)iodo]benzene), highlighting the importance of reaction conditions including the effects of the solvent, co-ligands (para-substituted pyridines), and substrate substituents on the product yields, selectivity, and reaction kinetics. The aziridination reactions with 1/PhINTs showed higher conversion than epoxidation with 1/PhIO (iodosobenzene). However, the reaction with PhINTs was less selective and yielded more products, including styrene oxide, benzaldehyde, and 2-phenyl-1-tosylaziridine. Therefore, the main aim of this study was to investigate the potential role of water in the formation of oxygen-containing by-products during radical-type nitrene transfer catalysis. During the catalytic tests, a lower yield was obtained in a protic solvent (trifluoroethanol) than in acetonitrile. In the case of the catalytic oxidation of para-substituted styrenes containing electron-donating groups, higher yield, TON, and TOF were achieved than those with electron-withdrawing groups. Pseudo-first-order kinetics were observed for the stoichiometric oxidation, and the second-order rate constants (k(2) = 7.16 × 10(-3) M(-1) s(-1) in MeCN, 2.58 × 10(-3) M(-1) s(-1) in CF(3)CH(2)OH) of the reaction were determined. The linear free energy relationships between the relative reaction rates (logk(rel)) and the total substituent effect (TE, 4R-PhCHCH(2)) parameters with slopes of 1.48 (MeCN) and 1.89 (CF(3)CH(2)OH) suggest that the stoichiometric aziridination of styrenes can be described through the formation of a radical intermediate in the rate-determining step. Styrene oxide formation during aqueous styrene aziridination most likely results from oxygen atom transfer via in situ iron oxo/oxyl radical complexes, which are formed through the hydrolysis of [Fe(III)(N•Ts)] under experimental conditions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。