tRNA-guanine transglycosylases (TGTs) are responsible for incorporating 7-deazaguanine-modified bases into certain tRNAs in eubacteria (preQ(1)), eukarya (queuine) and archaea (preQ(0)). In each kingdom, the specific modified base is different. We have found that the eubacterial and eukaryal TGTs have evolved to be quite specific for their cognate heterocyclic base and that Cys145 (Escherichia coli) is important in recognizing the amino methyl side chain of preQ(1) (Chen et al., Nuc. Acids Res. 39 (2011) 2834 [15]). A series of mutants of the E. coli TGT have been constructed to probe the role of three other active site amino acids in the differential recognition of heterocyclic substrates. These mutants have also been used to probe the differential inhibition of E. coli versus human TGTs by pteridines. The results indicate that mutation of these active site amino acids can "open up" the active site, allowing for the binding of competitive pteridine inhibitors. However, even the "best" of these mutants still does not recognize queuine at concentrations up to 50μM, suggesting that other changes are necessary to adapt the eubacterial TGT to incorporate queuine into RNA. The pteridine inhibition results are consistent with an earlier hypothesis that pteridines may regulate eukaryal TGT activity (Jacobson et al., Nuc. Acids Res. 9 (1981) 2351 [8]).
Differential heterocyclic substrate recognition by, and pteridine inhibition of E. coli and human tRNA-guanine transglycosylases.
阅读:3
作者:Eric Thomas C, Chen Yi-Chen, Garcia George A
| 期刊: | Biochemical and Biophysical Research Communications | 影响因子: | 2.200 |
| 时间: | 2011 | 起止号: | 2011 Jun 24; 410(1):34-9 |
| doi: | 10.1016/j.bbrc.2011.05.100 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
