Diagnosis of Cognitive and Mental Disorders: A New Approach Based on Spectral-Spatiotemporal Analysis and Local Graph Structures of Electroencephalogram Signals.

阅读:19
作者:Sanati Fahandari Arezoo, Moshiryan Sara, Goshvarpour Ateke
BACKGROUND/OBJECTIVES: The classification of psychological disorders has gained significant importance due to recent advancements in signal processing techniques. Traditionally, research in this domain has focused primarily on binary classifications of disorders. This study aims to classify five distinct states, including one control group and four categories of psychological disorders. METHODS: Our investigation will utilize algorithms based on Granger causality and local graph structures to improve classification accuracy. Feature extraction from connectivity matrices was performed using local structure graphs. The extracted features were subsequently classified employing K-Nearest Neighbors (KNN), Support Vector Machine (SVM), AdaBoost, and Naïve Bayes classifiers. RESULTS: The KNN classifier demonstrated the highest accuracy in the gamma band for the depression category, achieving an accuracy of 89.36%, a sensitivity of 89.57%, an F1 score of 94.30%, and a precision of 99.90%. Furthermore, the SVM classifier surpassed the other machine learning algorithms when all features were integrated, attaining an accuracy of 89.06%, a sensitivity of 88.97%, an F1 score of 94.16%, and a precision of 100% for the discrimination of depression in the gamma band. CONCLUSIONS: The proposed methodology provides a novel approach for analyzing EEG signals and holds potential applications in the classification of psychological disorders.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。