Diagnosis of Cognitive and Mental Disorders: A New Approach Based on Spectral-Spatiotemporal Analysis and Local Graph Structures of Electroencephalogram Signals.

阅读:4
作者:Sanati Fahandari Arezoo, Moshiryan Sara, Goshvarpour Ateke
BACKGROUND/OBJECTIVES: The classification of psychological disorders has gained significant importance due to recent advancements in signal processing techniques. Traditionally, research in this domain has focused primarily on binary classifications of disorders. This study aims to classify five distinct states, including one control group and four categories of psychological disorders. METHODS: Our investigation will utilize algorithms based on Granger causality and local graph structures to improve classification accuracy. Feature extraction from connectivity matrices was performed using local structure graphs. The extracted features were subsequently classified employing K-Nearest Neighbors (KNN), Support Vector Machine (SVM), AdaBoost, and Naïve Bayes classifiers. RESULTS: The KNN classifier demonstrated the highest accuracy in the gamma band for the depression category, achieving an accuracy of 89.36%, a sensitivity of 89.57%, an F1 score of 94.30%, and a precision of 99.90%. Furthermore, the SVM classifier surpassed the other machine learning algorithms when all features were integrated, attaining an accuracy of 89.06%, a sensitivity of 88.97%, an F1 score of 94.16%, and a precision of 100% for the discrimination of depression in the gamma band. CONCLUSIONS: The proposed methodology provides a novel approach for analyzing EEG signals and holds potential applications in the classification of psychological disorders.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。