The search for new antibiotics, substances that kill prokaryotic cells and do not kill eukaryotic cells, is an urgent need for modern medicine. Among the most promising are derivatives of triphenylphosphonium, which can protect the infected organs of mammals and heal damaged cells as mitochondria-targeted antioxidants. In addition to the antioxidant action, triphenylphosphonium derivatives exhibit antibacterial activity. It has recently been reported that triphenylphosphonium derivatives cause either cytotoxic effects or inhibition of cellular metabolism at submicromolar concentrations. In this work, we analyzed the MTT data using microscopy and compared them with data on changes in the luminescence of bacteria. We have shown that, at submicromolar concentrations, only metabolism is inhibited, while an increase in alkyltriphenylphosphonium (CnTPP) concentration leads to adhesion alteration. Thus, our data on eukaryotic and prokaryotic cells confirm a decrease in the metabolic activity of cells by CnTPPs but do not confirm a cytocidal effect of TPPs at submicromolar concentrations. This allows us to consider CnTPP as a non-toxic antibacterial drug at low concentrations and a relatively safe vector for delivering other antibacterial substances into bacterial cells.
Observation of Cytotoxicity of Phosphonium Derivatives Is Explained: Metabolism Inhibition and Adhesion Alteration.
阅读:2
作者:Nazarov Pavel A, Khrulnova Svetlana A, Kessenikh Andrew G, Novoyatlova Uliana S, Kuznetsova Svetlana B, Bazhenov Sergey V, Sorochkina Alexandra I, Karakozova Marina V, Manukhov Ilya V
| 期刊: | Antibiotics-Basel | 影响因子: | 4.600 |
| 时间: | 2023 | 起止号: | 2023 Apr 6; 12(4):720 |
| doi: | 10.3390/antibiotics12040720 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
