BACKGROUND: Identifying rare germline and somatic variants associated with cancer progression is an important research topic in cancer genomics. Although many approaches are proposed for rare variant association study, they are not fit for cancer sequencing data due to multiple issues, such as overly relying on pre-selection, losing sight of interacting hotspots, etc. RESULTS: In this article, we propose an improved pipeline to identify germline variant and somatic mutation interactions influencing cancer susceptibility from pair-wise cancer sequencing data. The proposed pipeline, RareProb-C performs an algorithmic selection on the given variants by incorporating the variant allelic frequencies. The interactions among the variants are considered within the regions which are limited by a four-gamete test. Then it filters singular cases according to the posterior probability at each site. Finally, it outputs the selected candidates that pass a collapse test. CONCLUSIONS: We apply RareProb-C on a series of carefully constructed simulation cases and it outperforms six existing genetic model-free approaches. We also test RareProb-C on 429 TCGA ovarian cancer cases, and RareProb-C successfully identifies the known highlighted variants which are considered increasing disease susceptibilities.
An improved burden-test pipeline for identifying associations from rare germline and somatic variants.
阅读:2
作者:Geng Yu, Zhao Zhongmeng, Zhang Xuanping, Wang Wenke, Cui Xingjian, Ye Kai, Xiao Xiao, Wang Jiayin
| 期刊: | BMC Genomics | 影响因子: | 3.700 |
| 时间: | 2017 | 起止号: | 2017 Oct 16; 18(Suppl 7):753 |
| doi: | 10.1186/s12864-017-4133-4 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
