Convolutional Neural Networks for Automated Classification of Prostate Multiparametric Magnetic Resonance Imaging Based on Image Quality.

阅读:4
作者:Cipollari Stefano, Guarrasi Valerio, Pecoraro Martina, Bicchetti Marco, Messina Emanuele, Farina Lorenzo, Paci Paola, Catalano Carlo, Panebianco Valeria
BACKGROUND: Prostate magnetic resonance imaging (MRI) is technically demanding, requiring high image quality to reach its full diagnostic potential. An automated method to identify diagnostically inadequate images could help optimize image quality. PURPOSE: To develop a convolutional neural networks (CNNs) based analysis pipeline for the classification of prostate MRI image quality. STUDY TYPE: Retrospective. SUBJECTS: Three hundred sixteen prostate mpMRI scans and 312 men (median age 67). FIELD STRENGTH/SEQUENCE: A 3 T; fast spin echo T2WI, echo planar imaging DWI, ADC, gradient-echo dynamic contrast enhanced (DCE). ASSESSMENT: MRI scans were reviewed by three genitourinary radiologists (V.P., M.D.M., S.C.) with 21, 12, and 5 years of experience, respectively. Sequences were labeled as high quality (Q1) or low quality (Q0) and used as the reference standard for all analyses. STATISTICAL TESTS: Sequences were split into training, validation, and testing sets (869, 250, and 120 sequences, respectively). Inter-reader agreement was assessed with the Fleiss kappa. Following preprocessing and data augmentation, 28 CNNs were trained on MRI slices for each sequence. Model performance was assessed on both a per-slice and a per-sequence basis. A pairwise t-test was performed to compare performances of the classifiers. RESULTS: The number of sequences labeled as Q0 or Q1 was 38 vs. 278 for T2WI, 43 vs. 273 for DWI, 41 vs. 275 for ADC, and 38 vs. 253 for DCE. Inter-reader agreement was almost perfect for T2WI and DCE and substantial for DWI and ADC. On the per-slice analysis, accuracy was 89.95% ± 0.02% for T2WI, 79.83% ± 0.04% for DWI, 76.64% ± 0.04% for ADC, 96.62% ± 0.01% for DCE. On the per-sequence analysis, accuracy was 100% ± 0.00% for T2WI, DWI, and DCE, and 92.31% ± 0.00% for ADC. The three best algorithms performed significantly better than the remaining ones on every sequence (P-value < 0.05). DATA CONCLUSION: CNNs achieved high accuracy in classifying prostate MRI image quality on an individual-slice basis and almost perfect accuracy when classifying the entire sequences. EVIDENCE LEVEL: 4 TECHNICAL EFFICACY: Stage 1.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。