Repurposing an inhibitor of ribosomal biogenesis with broad anti-fungal activity.

阅读:3
作者:Sun Nuo, Li Dongmei, Zhang Yuhan, Killeen Kyle, Groutas William, Calderone Richard
The lack of new antifungal compounds with unique mechanisms of action is a concern for therapeutic management of patients. To identify inhibitors against human pathogenic fungi, we screened ~3000 compounds provided by the Developmental Therapeutics Program of NIH/NCI against a panel of pathogenic fungi including Candida species, Aspergillus fumigatus, and Cryptococcus neoformans. NSC319726 (a thiosemicarbazone) had broad antifungal activity in the range of 0.1-2.0 µg/ml and was also inhibitory to fluconazole-resistant isolates of Candida species. Synergy was demonstrated with NSC319726 and azoles, as well as caspofungin. The inhibitory concentration 50% (IC(50)) of NSC319726 was 35-800-fold higher than the Minimum Inhibitory Concentration 50% (MIC(50) values), which indicates low compound toxicity to human cells in vitro. Transcriptome analysis of treated and untreated C. albicans using Gene Ontology (GO) revealed a large cluster of down regulated genes that encode translational proteins, especially those with ribosome biogenesis functions. As NSC319726 was first shown to have anti-cancer activity, its affects against human pathogenic fungi establish NSC319726 as a repurposed, off-patent compound that has potential antifungal activity. The minimal in vitro toxicity of lead optimized NSC319726 and its reasonable inhibitory activity against pathogens suggest advancing this compound to in vivo toxicity testing and protection studies against candidiasis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。