Characterizing the mycobacterial transporters involved in the uptake and/or catabolism of host-derived nutrients required by mycobacteria may identify novel drug targets against tuberculosis. Here, we identify and characterize a member of the amino acid-polyamine-organocation superfamily, a potential γ-aminobutyric acid (GABA) transport protein, GabP, from Mycobacterium smegmatis The protein was expressed to a level allowing its purification to homogeneity, and size exclusion chromatography coupled with multiangle laser light scattering (SEC-MALLS) analysis of the purified protein showed that it was dimeric. We showed that GabP transported γ-aminobutyric acid both in vitro and when overexpressed in E. coli Additionally, transport was greatly reduced in the presence of β-alanine, suggesting it could be either a substrate or inhibitor of GabP. Using GabP reconstituted into proteoliposomes, we demonstrated that γ-aminobutyric acid uptake is driven by the sodium gradient and is stimulated by membrane potential. Molecular docking showed that γ-aminobutyric acid binds MsGabP, another Mycobacterium smegmatis putative GabP, and the Mycobacterium tuberculosis homologue in the same manner. This study represents the first expression, purification, and characterization of an active γ-aminobutyric acid transport protein from mycobacteria.IMPORTANCE The spread of multidrug-resistant tuberculosis increases its global health impact in humans. As there is transmission both to and from animals, the spread of the disease also increases its effects in a broad range of animal species. Identifying new mycobacterial transporters will enhance our understanding of mycobacterial physiology and, furthermore, provides new drug targets. Our target protein is the gene product of msmeg_6196, annotated as GABA permease, from Mycobacterium smegmatis strain MC(2) 155. Our current study demonstrates it is a sodium-dependent GABA transporter that may also transport β-alanine. As GABA may well be an essential nutrient for mycobacterial metabolism inside the host, this could be an attractive target for the development of new drugs against tuberculosis.
Functional Characterization of the γ-Aminobutyric Acid Transporter from Mycobacterium smegmatis MC(2) 155 Reveals Sodium-Driven GABA Transport.
阅读:7
作者:PaviÄ Ana, Ji Yurui, Serafini Agnese, Garza-Garcia Acely, McPhillie Martin J, Holmes Alexandra O M, de Carvalho Luiz Pedro Sório, Wang Yingying, Bartlam Mark, Goldman Adrian, Postis Vincent L G
| 期刊: | Journal of Bacteriology | 影响因子: | 3.000 |
| 时间: | 2021 | 起止号: | 2021 Jan 25; 203(4):e00642-20 |
| doi: | 10.1128/JB.00642-20 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
