Current methods of power and sample size calculations for the design of longitudinal studies to evaluate mediation effects are mostly based on simulation studies and do not provide closed-form formulae. A further challenge due to the longitudinal study design is the consideration of missing data, which almost always occur in longitudinal studies due to staggered entry or drop out. In this article, we consider the product of coefficients as a measure for the longitudinal mediation effect and evaluate three methods for testing the hypothesis on the longitudinal mediation effect: the joint significant test, the normal approximation and the test of b methods. Formulae for power and sample size calculations are provided under each method while taking into account missing data. Performance of the three methods under limited sample size are examined using simulation studies. An example from the Einstein aging study is provided to illustrate the methods.
Power and sample size calculations for evaluating mediation effects in longitudinal studies.
阅读:8
作者:Wang Cuiling, Xue Xiaonan
| 期刊: | Statistical Methods in Medical Research | 影响因子: | 1.900 |
| 时间: | 2016 | 起止号: | 2016 Apr;25(2):686-705 |
| doi: | 10.1177/0962280212465163 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
