Tyrosine is one of the essential metabolites present in the human body for nutritional maintenance and normal physiological functioning. Its concentration in the body is crucial in predicting various hereditary, emotional, and physiological disorders. Therefore, quantitative monitoring of tyrosine in clinical samples is indispensable. We state the use of carbon nanocoils/manganese tetraphenylporphyrin convened glassy carbon electrode (CNC/MnTPP/GC) for the streamlined electrochemical sensing of tyrosine. Cutting-edge analytical techniques were employed to perform a comprehensive physicochemical analysis of the synthesized materials. To investigate the electrochemical properties, various techniques such as cyclic voltammetry (CV), differential pulse voltammetry (DPV), electrochemical impedance spectroscopy, and chronocoulometry were employed. CNC/MnTPP/GC displayed an optimal response at pH 5 and exhibited remarkable linearity within the concentration range of 0.05 to 100 μM for tyrosine. Using DPV, it demonstrated a low limit of detection (21 nM ± 1.17) and a sensitivity of 0.12 μA μM(-1) cm(-2). CNC/MnTPP/GC displayed excellent performance in terms of repeatability, reproducibility, and stability for up to 30 days, making it suitable for real-time analysis, particularly in the analysis of tyrosine in blood serum. Notably, CNC/MnTPP/GC showcased a superior detection limit compared to previously reported methods.
Manganese tetraphenylporphyrin and carbon nanocoil interface-based electrochemical sensing of tyrosine.
阅读:3
作者:Batool Bukhari Syeda Aqsa, Aziz Abeera, Nasir Habib, Ullah Sharif, Akhtar Tehmina, Iram Sadia, Sitara Effat, Mushtaq Shehla, Moiz Syed Abdul
| 期刊: | RSC Advances | 影响因子: | 4.600 |
| 时间: | 2024 | 起止号: | 2024 Aug 1; 14(33):24105-24114 |
| doi: | 10.1039/d4ra02048k | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
