Development of a reactive oxygen species-sensitive nitric oxide synthase inhibitor for the treatment of ischemic stroke.

阅读:13
作者:Nash Kevin M, Schiefer Isaac T, Shah Zahoor A
Ischemic stroke is caused by a blockage of cerebral blood flow resulting in neuronal and glial hypoxia leading to inflammatory and reactive oxygen species (ROS)-mediated cell death. Nitric oxide (NO) formed by NO synthase (NOS) is known to be protective in ischemic stroke, however NOS has been shown to 'uncouple' under oxidative conditions to instead produce ROS. Nitrones are antioxidant molecules that are shown to trap ROS to then decompose and release NO. In this study, the nitrone 5 was designed such that its decomposition product is a NOS inhibitor, 6, effectively leading to NOS inhibition specifically at the site of ROS production. The ability of 5 to spin-trap radicals and decompose to 6 was observed using EPR and LC-MS/MS. The pro-drug concept was tested in vitro by measuring cell viability and 6 formation in SH-SY5Y cells subjected to oxygen glucose deprivation (OGD). 5 was found to be more efficacious and more potent than PBN, and was able to increase phospho-Akt while reducing nitrotyrosine and cleaved caspase-3 levels. 6 treatment, but not 5, was found to decrease NO production in LPS-stimulated microglia. Doppler flowmetry on anesthetized mice showed increased cerebral blood flow upon intravenous administration of 1mg/kg of 5, but a return to baseline upon administration of 10mg/kg, likely due to its dual nature of antioxidant/NO-donor and NOS-inhibition. Mice treated with 5 after permanent ischemia exhibited a >30% reduction in infarct volume, and higher formation of 6 in ischemic tissue resulting in region specific effects limited to the infarct area.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。