The p-median problem selects p source locations to serve n destinations such that the average distance between the destinations and corresponding sources is minimized. It is a well-studied NP-hard combinatorial optimization problem with many existing heuristic solutions, however, existing algorithms are not scalable for large-scale problems. The fast interchange (FI) heuristic which yields results close to the optimal solution with respect to the objective function value becomes suboptimal with respect to time requirements for large-scale problems. We present a novel distributed divide and conquer algorithm, EM-FI, to solve large-scale p-median problems quickly even with limited computing resources. The algorithm identifies the existing spatial clusters of the destination locations using expectation maximization (EM) and solves them as independent p-median problems using integer programming or FI concurrently. The proposed algorithm showed an order of magnitude improvement in time without the loss of quality in terms of the objective function value on synthetic and real datasets.
A distributed algorithm for solving large-scale p-median problems using expectation maximization.
阅读:12
作者:Gwalani Harsha, Helsing Joseph, Alshammari Sultanah M, Tiwari Chetan, Mikler Armin R
| 期刊: | PeerJ Computer Science | 影响因子: | 2.500 |
| 时间: | 2024 | 起止号: | 2024 Nov 21; 10:e2446 |
| doi: | 10.7717/peerj-cs.2446 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
