In engineering practices, it is critical and necessary to either measure or estimate the uniaxial compressive strength (UCS) of the rock. Measuring the UCS of rocks requires comprehensive studies in the field and in the laboratory for the rock block sampling, coring, and testing. These studies are time-consuming, expensive and go through difficult processes. Alternatively, the UCS can either be estimated by empirical relationships or predictive models with various measured mechanical and physical parameters of the rocks. Previous studies used different methods to predict UCS, including least squares regression techniques (MLR), adaptive neuro-fuzzy inference system (ANFIS), Sequential artificial neuron networks (SANN), etc. This study is intended to estimate the UCS of the carbonate rock by using a simple, measured Schmidt Hammer (SHV(C)) test on core sample and a unit weight (γ(n)) of carbonate rock. Principal components regression (PCR), MLR, SANN, and ANFIS are employed to predict the UCS. We are not aware of any study compared the performances of these methods for the prediction of the UCS values. Based on the root mean square error, mean absolute error and R(2), the Sequential artificial neural network has a slight advantage against the other three models.
Several machine learning techniques comparison for the prediction of the uniaxial compressive strength of carbonate rocks.
阅读:6
作者:Hassan Mohamed Yusuf, Arman Hasan
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2022 | 起止号: | 2022 Dec 5; 12(1):20969 |
| doi: | 10.1038/s41598-022-25633-0 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
