Neuroprotective Effects of Ultra-High Dose Rate FLASH Bragg Peak Proton Irradiation.

阅读:3
作者:Dokic Ivana, Meister Sarah, Bojcevski Jovana, Tessonnier Thomas, Walsh Dietrich, Knoll Maximilian, Mein Stewart, Tang Zili, Vogelbacher Lena, Rittmueller Claudia, Moustafa Mahmoud, Krunic Damir, Brons Stephan, Haberer Thomas, Debus Jürgen, Mairani Andrea, Abdollahi Amir
PURPOSE: To investigate brain tissue response to ultra-high dose rate (uHDR, FLASH) and standard dose rate (SDR) proton irradiations in the Bragg peak region. METHODS AND MATERIALS: Active scanning uHDR delivery was established for proton beams for investigation of dose rate effects between clinical SDR and uHDR at ∼10 Gy in the Bragg peak region (dose-averaged linear energy transfer [LET(D)] ranging from 4.5 to 10.2 keV µm(-1) ). Radiation- induced injury of neuronal tissue was assessed by studying the DNA double strand break repair kinetics surrogated by nuclear γH2AX staining (radiation induced foci [RIF]), microvascular density and structural integrity (MVD, CD31+ endothelium), and inflammatory microenvironmental response (CD68+ microglia/macrophages and high mobility group box protein 1[HMGB]) in healthy C57BL/6 mouse brains. RESULTS: Averaged dose rates achieved were 0.17 Gy/s (SDR) and 120 Gy/s (uHDR). The fraction of RIF-positive cells increased after SDR ∼10-fold, whereas a significantly lower fraction of RIF-positive cells was found after uHDR versus SDR (∼2 fold, P < .0001). Moreover, uHDR substantially preserved the microvascular architecture and reduced microglia/macrophage regulated associated inflammation as compared with SDR. CONCLUSIONS: The feasibility of uHDR raster scanning proton irradiation is demonstrated to elicit FLASH sparing neuroprotective effects compared to SDR in a preclinical in vivo model.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。