Effects of Fatty Acid Amide Hydrolase Inhibitors Acute Administration on the Positive and Cognitive Symptoms of Schizophrenia in Mice.

阅读:3
作者:Kruk-Slomka Marta, Banaszkiewicz Izabela, Slomka Tomasz, Biala Grazyna
The connection between the endocannabinoid system (ECS) and schizophrenia is supported by a large body of research. The ECS is composed of two types cannabinoid (CB: CB1 and CB2) receptors and their endogenous ligands, endocannabinoids. The best-known endocannabinoids, anandamide (AEA) and 2-arachidonoylglycerol (2-AG), are intracellularly degraded by fatty acid hydrolase (FAAH) and monoacylglycerol lipase (MAGL), respectively. Thus, the function of ECS might be modulated in a direct way, through CB receptor ligands or indirectly by FAAH and MAGL inhibitors. We evaluated that the direct influence of ECS, using FAAH (URB 597) and MAGL (JZL 184) inhibitors, on the schizophrenia-like effects in mice. The behavioral schizophrenia-like symptoms were obtained in animals by using N-methyl D-aspartate (NMDA) receptor antagonists, MK-801. An acute administration of MK-801 (0.3 and 0.6 mg/kg) induced psychotic symptoms in rodents, manifested as the increase in locomotor activity, measured in actimeters, as well as the memory impairment, assessed in the passive avoidance (PA) task. We revealed that an acute administration of URB 597, at the dose of 0.3 mg/kg, attenuated MK-801 (0.6 mg/kg)-induced memory impairment. In turn, an acute administration of URB 597 at a higher dose (1 mg/kg) potentiated MK-801 (0.3 mg/kg)-induced memory impairment. Similarly, an acute administration of JZL 184 (20 and 40 mg/kg) intensified an amnestic effect of MK-801 (0.3 mg/kg). Moreover, an acute injection of JZL 184 (1 mg/kg) potentiated hyperlocomotion is provoked by MK-801 (0.3 and 0.6 mg/kg) administration. The present findings clearly indicate that ECS, through an indirect manner, modulates a variety of schizophrenia-like responses in mice.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。