Sotalol is an antiarrhythmic drug with a narrow therapeutic index and potential adverse effects, including hypotension and heart block, requiring continuous and precise blood-level monitoring. In this study, an innovative optical sensor was developed using silver nanoparticle (AgNP)-functionalized parafilm (PF)- and poly methyl methacrylate (PMMA) for the trace-level detection of sotalol in human blood plasma. The detection was performed using CMYK-based colorimetric digital image analysis via the Color Picker software app, achieving a low limit of quantification of 1 μM and a linear range of 0.001 to 20 mM. The selectivity of the sensor was also validated in the presence of potentially interfering cardiovascular drugs. Nanoparticle characterization revealed a shift in zeta potential (Z (p)) from -14.5 to -6.16 mV, confirming a strong interaction between sotalol and AgNPs, as the optical probe. The sensor offers an innovative, cost-effective, portable, and rapid (5-min analysis time) approach for detecting sotalol in blood plasma. This sensor holds significant potential for point-of-care diagnostics and on-site drug monitoring, providing a reliable alternative to conventional, lab-dependent analytical methods for therapeutic drug monitoring.
Opto-sensing of sotalol using parafilm and poly(methyl methacrylate) micro-plates decorated by silver nanoparticles: state-of-the-art for one-drop pharmaceutical analysis.
阅读:12
作者:Behyar Milad Baghal, Bahavarnia Farnaz, Nilghaz Azadeh, Hasanzadeh Mohammad, Shadjou Nasrin
| 期刊: | RSC Advances | 影响因子: | 4.600 |
| 时间: | 2025 | 起止号: | 2025 Apr 17; 15(16):12321-12330 |
| doi: | 10.1039/d5ra01716e | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
