The Hepatitis B Virus (HBV) ribonuclease H (RNase H) although promising remains an unexploited therapeutic target. HBV RNase H inhibition causes premature termination of viral minus-polarity DNA strands, prevents the synthesis of the viral positive-polarity DNA strand, and causes accumulation of RNA:DNA heteroduplexes within viral capsids. As part of our ongoing research to develop more potent anti-HBV RNase H inhibitors, we designed, synthesized and analyzed a library of 18 novel compounds (17 N-hydroyxpyridinedione (HPD) imine derivatives and 1 barbituric acid analogue) as potential leads for HBV treatment development. In cell assays, fourteen HPDs showed significant anti-HBV activity with EC(50)s from 1.1 to 2.5 μM and selectivity indices (SI) of up to 58. Three of them exhibited more than 3-fold improvement in the SI over the best previous HPD imine (SI = 13). To gain insight to the interaction between the tested compounds and the active site of HBV RNase H, docking experiments were undertaken. In almost all binding poses, the novel HPDs coordinated both active site Mg(2+) ions via their oxygen trident. Furthermore, the novel HPDs displayed high cell permeability and solubility as well as good drug-like properties. These results reveal that HPD imines can be significantly active and selective HBV inhibitors, and that the HPD scaffold merits further development towards anti-HBV agents.
Identification and assessment of the 1,6-dihydroxy-pyridin-2-one moiety as privileged scaffold for HBV ribonuclease H inhibition.
阅读:8
作者:Giannakopoulou Erofili, Pardali Vasiliki, Edwards Tiffany C, Woodson Molly, Tajwar Razia, Tavis John E, Zoidis Grigoris
| 期刊: | Antiviral Research | 影响因子: | 4.000 |
| 时间: | 2024 | 起止号: | 2024 Mar;223:105833 |
| doi: | 10.1016/j.antiviral.2024.105833 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
