(R)-2-(2-methylimidazo[2,1-b]thiazol-6-yl)-1-(2-(5-(6-methylpyrimidin-4-yl)-2,3-dihydro-1H-inden-1-yl)-2,7-diazaspiro[3.5]nonan-7-yl)ethan-1-one (PF-5190457) was identified as a potent and selective inverse agonist of the ghrelin receptor [growth hormone secretagogue receptor 1a (GHS-R1a)]. The present translational bed-to-bench work characterizes the biotransformation of this compound in vivo and then further explores in vitro metabolism in fractions of human liver and primary hepatocytes. Following oral administration of PF-5190457 in a phase 1b clinical study, hydroxyl metabolites of the compound were observed, including one that had not been observed in previously performed human liver microsomal incubations. PF-6870961 was biosynthesized using liver cytosol, and the site of hydroxylation was shown to be on the pyrimidine using nuclear magnetic resonance spectroscopy. The aldehyde oxidase (AO) inhibitor raloxifene and the xanthine oxidase inhibitor febuxostat inhibited the formation of PF-6870961 in human liver cytosol, suggesting both enzymes were involved in the metabolism of the drug. However, greater inhibition was observed with raloxifene, indicating AO is a dominant enzyme in the biotransformation. The intrinsic clearance of the drug in human liver cytosol was estimated to be 0.002 ml/min per milligram protein. This study provides important novel information at three levels: 1) it provides additional new information on the recently developed novel compound PF-5190457, the first GHS-R1a blocker that has moved to development in humans; 2) it provides an example of a reverse translational approach where a discovery in humans was brought back, validated, and further investigated at the bench level; and 3) it demonstrates the importance of considering the molybdenum-containing oxidases during the development of new drug entities. SIGNIFICANCE STATEMENT: PF-5190457 is a novel ghrelin receptor inverse agonist that is currently undergoing clinical development for treatment of alcohol use disorder. PF-6870961, a major hydroxyl metabolite of the compound, was observed in human plasma, but was absent in human liver microsomal incubations. PF-6870961 was biosynthesized using liver cytosol, and the site of hydroxylation on the pyrimidine ring was characterized. Inhibitors of aldehyde oxidase and xanthine oxidase inhibited the formation of PF-6870961 in human liver cytosol, suggesting both enzymes were involved in the metabolism of the drug. This information is important for patient selection in subsequent clinical studies.
Role of Molybdenum-Containing Enzymes in the Biotransformation of the Novel Ghrelin Receptor Inverse Agonist PF-5190457: A Reverse Translational Bed-to-Bench Approach.
阅读:4
作者:Adusumalli Sravani, Jamwal Rohitash, Obach R Scott, Ryder Tim F, Leggio Lorenzo, Akhlaghi Fatemeh
| 期刊: | Drug Metabolism and Disposition | 影响因子: | 4.000 |
| 时间: | 2019 | 起止号: | 2019 Aug;47(8):874-882 |
| doi: | 10.1124/dmd.119.087015 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
